A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks

نویسندگان

  • Çagdas Hakan Aladag
  • Ufuk Yolcu
  • Erol Egrioglu
چکیده

Many fuzzy time series approaches have been proposed in recent years. These methods include three main phases such as fuzzification, defining fuzzy relationships and, defuzzification. Aladag et al. [2] improved the forecasting accuracy by utilizing feed forward neural networks to determine fuzzy relationships in high order fuzzy time series. Another study for increasing forecasting accuracy was made by Cheng et al. [6]. In their study, they employ adaptive expectation model to adopt forecasts obtained from first order fuzzy time series forecasting model. In this study, we propose a novel high order fuzzy time series method in order to obtain more accurate forecasts. In the proposed method, fuzzy relationships are defined by feed forward neural networks and adaptive expectation model is used for adjusting forecasted values. Unlike the papers of Cheng et al. [6] and Liu et al. [14], forecast adjusting is done by using constraint optimization for weighted parameter. The proposed method is applied to the enrollments of the University of Alabama and the obtained forecasting results compared to those obtained from other approaches are available in the literature. As a result of comparison, it is clearly seen that the proposed method significantly increases the forecasting accuracy. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

A NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES

In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2010